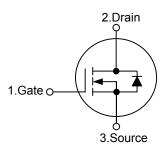


UNISONIC TECHNOLOGIES CO., LTD

UT75N02

Preliminary

75A, 25V N-CHANNEL POWER MOSFET


DESCRIPTION

The UTC **UT75N02** uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with low gate voltages. This device is suitable for use as a load switch or in PWM applications.

FEATURES

- * R_{DS(ON)}< 7mΩ @ V_{GS}=10V
- * R_{DS(ON)}< 8mΩ @ V_{GS}=7V

SYMBOL

ORDERING INFORMATION

	1
da	TO-251
de ate /M	1 TO-220

Ordering	Deelvere	Pin /	Assignr	Deaking		
Lead Free	Halogen Free	Package	1	2	3	Packing
UT75N02L-TA3-T	UT75N02G-TA3-T	TO-220	G	D	S	Tube
UT75N02L-TM3-T	UT75N02G-TM3-T	TO-251	G	D	S	Tube

Note: Pin Assignment: G: Gate D: Drain S: Source

UT75N02L-TA3-T (1)Packing Type (2)Package Type (3)Lead Free	(1) T: Tube (2) TA3: TO-220, TM3: TO-251 (3) G: Halogen Free, L: Lead Free

■ ABSOLUTE MAXIMUM RATINGS (T_c = 25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain Source Voltage		V _{DSS}	25	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Continuous Drain Current		I _D	75	A	
Pulsed Drain Current (Note 2)		I _{DM}	170	A	
Avalanche Current		I _{AR}	60	Α	
Avalanche Energy	L=0.1mH	E _{AS}	140	mJ	
Repetitive Avalanche Energy (Note 3)	L=0.05mH	E _{AR}	5.6	mJ	
	TO-220		40	14/	
Power Dissipation	TO-251	PD	28	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Note: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Pulse width limited by maximum junction temperature.

3. Duty cycle≤1%.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
lunction to Ambient	TO-220	θ _{JA}	62.5	°C/W
Junction to Ambient	TO-251		110	
hunstion to Orac	TO-220	θ _{JC}	3.13	°C/W
Junction to Case	TO-251		4.53	

UT75N02

■ ELECTRICAL CHARACTERISTICS (T_c = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V, I _D =250µA	25			V		
Drain Course Lookana Current		$V_{DS} = 20V, V_{GS} = 0V$			25	μA		
Drain-Source Leakage Current	I _{DSS}	V _{DS} =20V, V _{GS} = 0V, T _J = 125°C			250	μA		
Gate-Source Leakage Current	I _{GSS}	$V_{DS}=0V$, $V_{GS}=\pm 20V$			±250	nA		
ON CHARACTERISTICS								
Gate Threshold Voltage	V _{GS(TH)}	V _{DS} = V _{GS} , I _D =250µA	1	1.5	3	V		
On-State Drain Current (Note 1)	I _{D(ON)}	V _{DS} = 10V, V _{GS} = 10V	70			Α		
Static Drain-Source On-Resistance	Б	V _{GS} = 10V, I _D = 30A		5	7	mΩ		
(Note 1)	R _{DS(ON)}	V _{GS} = 7V, I _D = 24A		6	8	mΩ		
DYNAMIC PARAMETERS								
Input Capacitance	CISS			5000		рF		
Output Capacitance	C _{OSS}	V _{DS} =15V, V _{GS} =0 V, f=1MHz		1800		pF		
Reverse Transfer Capacitance	C _{RSS}			800		pF		
SWITCHING PARAMETERS (Note 2)						-		
Turn-ON Delay Time	t _{D(ON)}			7		ns		
Turn-ON Rise Time	t _R	V _{DS} = 15V, V _{GS} = 10V, I _D ≈30A R _{GS} = 2.5Ω, R _L = 1Ω,		7		ns		
Turn-OFF Delay Time	$t_{D(OFF)}$			24		ns		
Turn-OFF Fall-Time	t _F			6		ns		
Total Gate Charge	Q_{G}	V_{DS} =0.5 $V_{(BR)DSS}$, V_{GS} =10V, I_{D} =35A		140		nC		
Gate Source Charge	Q_{GS}			40		nC		
Gate Drain Charge	Q_{GD}			75		nC		
SOURCE- DRAIN DIODE RATINGS AND	CHARACT	ERISTICS						
Forward Voltage (Note 1)	V_{SD}	$I_F = I_S, V_{GS} = 0V$			1.3	V		
Continuous Current	I _S				75	Α		
Notos: 1 Pulso tost : Pulso Width < 300u		colo < 00/						

Notes: 1. Pulse test : Pulse Width≤300µsec, Duty Cycle≤2%

2. Independent of operating temperature

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

